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1 Introduction
The concepts of closed sets and some low separation
axioms are fundamental with respect to the investiga-
tion of general topological spaces. In 1956, Maki [17]
introduced the concept of Λ-sets in topological spaces
as the sets that coincide with their kernel. The kernel
of a set A is the intersection of all open superset A.
Arenas et al. [1] introduced and investigated the con-
cept of λ-closed sets by involving Λ-sets and closed
sets. Caldas and Jafari [2] introduced the concept of
λ-closure of a set by utilizing the notion of λ-open sets
defined in [1]. In [3], the present authors introduced
and studied two new low separation axioms called λ-
R0 and λ-R1 by utilizing the notions of λ-open sets
and λ-closure operator. Keskin and Noiri [15] investi-
gated some properties of γ-R0 and γ-R1 spaces due
to Ekici [8, 9]. Veličko [19] introduced and inves-
tigated the concepts of δ-open sets, δ-closure opera-
tor and δ-closed sets. Georgiou et al. [10] by con-
sidering the notion of δ-closed sets, introduced and
investigated Λδ-sets, (Λ, δ)-closed sets, (Λ, δ)-open
sets and (Λ, δ)-closure operator. Caldas et al. [5] in-
troduced and investigated some new low separation
axioms by using the notions of (Λ, δ)-open sets and
(Λ, δ)-closure operator. In [4], the present authors in-
troduced and studied two new weak separation axioms
called Λθ-R0 and Λθ-R1 spaces by using the notions
of (Λ, θ)-open sets and (Λ, θ)-closure operator.

In 2002, Hatir and Noiri [13] have introduced the
notions of α-I -open sets, semi-I -open sets and β-
I -open sets in topological spaces via ideals and ob-
tained new decompositions of continuity. Later, in
[12], the same authors investigated the further prop-
erties of semi-I -open sets and semi-I -continuous
functions introduced in [13]. Recently, Sanabria et

al. [18] introduced and studied the notions of ΛsI -sets,
ΛsI -closed sets and I -generalized semi-closed sets by
using semi-I -open sets in ideal topological spaces.

The purpose of the present paper is to introduce
the notions of S ?-closed and S ?-open sets. More-
over, several interesting fundamental properties of
S ?-closed and S ?-open sets are investigated. Addi-
tionally, we introduce the notion of semi-I -R0 ideal
topological spaces and investigate some characteriza-
tions of such spaces.

2 Preliminaries

Throughout the present paper, spaces (X, τ) and
(Y, σ) (or simply X and Y ) always mean topological
spaces on which no separation axioms are assumed
unless explicitly stated. In a topological space (X, τ),
the closure and the interior of any subset A of X will
denoted by Cl(A) and Int(A), respectively. An ideal
I on a topological space (X, τ) is a nonempty col-
lection of subsets of X satisfying the following prop-
erties: (1) A ∈ I and B ⊆ A implies B ∈ I ;
(2) A ∈ I and B ∈ I implies A ∪ B ∈ I . A
topological space (X, τ) with an ideal I on X is
called an ideal topological space and is denoted by
(X, τ,I ). For an ideal topological space (X, τ,I )
and a subset A of X , A?(I ) is defined as follows:
A?(I ) = {x ∈ X : U ∩ A 6∈ I for every open
neighbourhood U of x}. In case there is no chance
for confusion, A?(I ) is simply written as A?. In
[16], A? is called the local function of A with re-
spect to I and τ and Cl?(A) = A? ∪ A defines a
Kuratowski closure operator for a topology τ?(I ).
For every ideal topological space (X, τ,I ), there
exists a topology τ?(I ) finer than τ , generated by
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B(τ,I ) = {U − I0 | U ∈ τ and I0 ∈ I }, but
in general B(τ,I ) is not always a topology [14]. A
subset A of an ideal topological space (X, τ,I ) is
said to be ?-closed [14] if A? ⊆ A. The complement
of a ?-closed set is said to be ?-open. The interior of a
subset A in (X, τ?(I )) is denoted by Int?(A).

Definition 1. [13] A subset A of an ideal topological
space (X, τ,I ) is said to be semi-I -open if

A ⊆ Cl?(Int(A)).

The complement of a semi-I -open set is called semi-
I -closed.

By sIO(X, τ) (resp. sIC(X, τ)), we denote
the family of all semi-I -open (resp. semi-I -closed)
sets of an ideal topological space (X, τ,I ). For a
subset A of an ideal topological space (X, τ,I ), the
intersection of all semi-I -open sets containing A is
called semi-I -closure [7] of A and is denoted by
sClI (A). The semi-I -interior [7] of A, denoted by
sIntI (A), is defined by the union of all semi-I -open
sets of X contained in A.

Lemma 2. [12] Let (X, τ,I ) be an ideal topological
space and A, B subsets of X .

(1) If Uγ ∈ sIO(X, τ) for each γ ∈ Γ, then
∪
γ∈Γ

Uγ ∈ sIO(X, τ).

(2) If A ∈ sIO(X, τ) and B ∈ τ , then

A ∩B ∈ sIO(X, τ).

Definition 3. [18] Let A be a subset of an ideal topo-
logical space (X, τ,I ). A subset ΛsI(A) is defined as
follows: ΛsI(A) = ∩{U | A ⊆ U,U ∈ sIO(X, τ)}.

Lemma 4. [18] Let A, B and {Bγ : γ ∈ Γ} be sub-
sets of an ideal topological space (X, τ,I ). Then

(1) A ⊆ ΛsI(A).

(2) ΛsI(Λ
s
I(A)) = ΛsI(A).

(3) If A ⊆ B, then ΛsI(A) ⊆ ΛsI(B).

(4) If A ∈ sIO(X, τ), then A = ΛsI(A).

(5) ΛsI( ∪
γ∈Γ

Bγ) = ∪
γ∈Γ

ΛsI(Bγ).

(6) ΛsI( ∩
γ∈Γ

Bγ) ⊆ ∩
γ∈Γ

ΛsI(Bγ).

Definition 5. [18] Let (X, τ,I ) be an ideal topolog-
ical space. A subset A of X is said to be ΛsI -set if
A = ΛsI(A). The family of all ΛsI -sets of (X, τ,I ) is
denoted by ΛsI(X) (or simply ΛsI ).

Lemma 6. [18] Let (X, τ,I ) be an ideal topological
space. Then

(1) ∅ and X are ΛsI -sets.

(2) For every subset A of X , ΛsI(A) is a ΛsI -set.

(3) If A ∈ sIO(X, τ), then A is a ΛsI -set.

(4) Every union of ΛsI -sets is a ΛsI -set.

(5) Every intersection of ΛsI -sets is a ΛsI -set.

Proposition 7. Let (X, τ,I ) be an ideal topological
space. Then ΛsI(X) = ΛΛs

I
(X).

Proof. By Lemma 6, sIO(X, τ) ⊆ ΛsI(X). Let A
be any subset of X . Then, we have

ΛΛs
I
(A) = ∩{U | A ⊆ U,U ∈ ΛsI(X)}
⊆ ∩{U | A ⊆ U,U ∈ sIO(X, τ)}
= ΛsI(A).

Therefore, ΛΛs
I
(A) ⊆ ΛsI(A). Now, we suppose that

x 6∈ ΛΛs
I
(A). Then, there exists U ∈ ΛsI(X) such that

A ⊆ U and x 6∈ U . Since x 6∈ U , there exists a semi-
I -open set V such that U ⊆ V and x 6∈ V . Thus,
x 6∈ ΛsI(A). This shows that ΛΛs

I
(A) ⊇ ΛsI(A) and

hence ΛsI(A) = ΛΛs
I
(A).

Definition 8. [18] An ideal topological space
(X, τ,I ) is said to be semi-I -T1 if for each pair
of distinct points x and y of X , there exist semi-I -
open sets U and V of X such that y ∈ U , y 6∈ U and
y ∈ V , x 6∈ V .

Lemma 9. [18] For an ideal topological space
(X, τ,I ), the following properties are equivalent:

(1) (X, τ,I ) is semi-I -T1.

(2) For each x ∈ X , the singleton {x} is a ΛsI -set.

(3) For each x ∈ X , the singleton {x} is semi-I -
closed.

Proposition 10. An ideal topological space (X, τ,I )
is semi-I -T1 if and only if the topological
(X,ΛsI(X)) is discrete.

Proof. Suppose that (X, τ,I ) is semi-I -T1. Let
x ∈ X , then by Lemma 9, {x} is a ΛsI -set and {x} is
open in (X,ΛsI(X)). Thus, every subset of X is open
in (X,ΛsI(X)) and hence (X,ΛsI(X)) is discrete.

Conversely, suppose that a topological space
(X,ΛsI(X)) is discrete. For each x ∈ X , {x} is open
in (X,ΛsI(X)) and hence {x} is a ΛsI -set. Therefore,
(X, τ,I ) is semi-I -T1 by Lemma 9.
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3 S ?-closed sets in ideal topological
spaces

In this section, we introduce the notion of S ?-closed
sets in ideal topological spaces. We also investigate
some of their fundamental properties.

Definition 11. A subset A of an ideal topological
space (X, τ,I ) is said to be S ?-closed ifA = T∩C,
where T is a ΛsI -set and C is a semi-I -closed set.
The family of all S ?-closed sets in an ideal topologi-
cal space (X, τ,I ) is denoted by S ?C(X).

Lemma 12. For a subset A of an ideal topological
space (X, τ,I ), the following properties hold:

(1) sClI (A) = A ∪ Int?(Cl(A)) [7].

(2) sIntI (A) = A ∩ Cl?(Int(A)).

Theorem 13. For a subset A of an ideal topological
space (X, τ,I ), the following properties are equiva-
lent:

(1) A is S ?-closed.

(2) A = T ∩ sClI (A), where T is a ΛsI -set.

(3) A = ΛsI(A) ∩ sClI (A).

(4) Int?(Cl(A)) ∩ ΛsI(A) ⊆ A.

Proof. (1) ⇒ (2): Let A = T ∩ C, where T is a ΛsI -
set and C is a semi-I -closed set. Since A ⊆ C, we
have sClI (A) ⊆ C and hence

A = T ∩ C
⊇ T ∩ sClI (A)

⊇ A.

Consequently, we obtain A = T ∩ sClI (A).
(2) ⇒ (3): Let A = T ∩ sClI (A), where T is a

ΛsI -set. Since A ⊆ T , we have ΛsI(A) ⊆ ΛsI(T ) = T
and hence

A ⊆ ΛsI(A) ∩ sClI (A)

⊆ T ∩ sClI (A)

= A.

Thus, A = ΛsI(A) ∩ sClI (A).
(3) ⇒ (4): Let A = ΛsI(A) ∩ sClI (A). By (3)

and Lemma 12(1), we have

A = ΛsI(A) ∩ [A ∪ Int?(Cl(A))]

= (ΛsI(A) ∩A) ∪ [ΛsI(A) ∩ Int?(Cl(A))]

= A ∪ [ΛsI(A) ∩ Int?(Cl(A))]

and hence Int?(Cl(A)) ∩ ΛsI(A) ⊆ A.
(4) ⇒ (1): Let Int?(Cl(A)) ∩ ΛsI(A) ⊆ A. Then

A∪ [ΛsI(A)∩ Int?(Cl(A))] = A and by Lemma 12(1),

A = (A ∪ ΛsI(A)) ∩ [A ∪ Int?(Cl(A))]

= ΛsI(A) ∩ sClI (A).

This shows that A is S ?-closed.

Definition 14. An ideal topological space (X, τ,I )
is said to be semi-I -T0 if for any distinct pair of
points in X , there exists a semi-I -open set contain-
ing one of the points but not the other.

It is obvious that every semi-I -T1 space is semi-
I -T0. However, the converse is not true as seen from
the next example.

Example 15. Let X = {a, b} with a topology

τ = {∅, {a}, X}

and an ideal I = {∅, {b}}. Then (X, τ,I ) is a semi-
I -T0 space which is not semi-I -T1.

Theorem 16. An ideal topological space (X, τ,I )
is semi-I -T0 if and only if for each pair of distinct
points x, y in X , sClI ({x}) 6= sClI ({y}).

Proof. Suppose that x, y ∈ X , x 6= y and
sClI ({x}) 6= sClI ({y}). Let z be a point of X
such that z ∈ sClI ({x}) but z 6∈ sClI ({y}). We
claim that x 6∈ sClI ({y}). For, if x ∈ sClI ({y}),
then sClI ({x}) ⊆ sClI ({y}). And this contradicts
the fact that z 6∈ sClI ({y}). Thus, x belongs to the
semi-I -open setX−sClI ({y}) to which y does not
belong.

Conversely, let (X, τ,I ) be a semi-I -T0 space
and x, y be any two distinct points of X . There exists
a semi-I -open set G containing x or y, say x but not
y. ThenX−G is a semi-I -closed set which does not
contain x but contains y. Since sClI ({y}) ⊆ X −G
and hence x 6∈ sClI ({y}). Consequently, we obtain
sClI ({x}) 6= sClI ({y}).

Theorem 17. An ideal topological space (X, τ,I ) is
semi-I -T0 if and only if for each x ∈ X , the single-
ton {x} is S ?-closed.

Proof. Suppose that (X, τ,I ) is semi-I -T0. For
each x ∈ X , it is obvious that

{x} ⊆ ΛsI({x}) ∩ sClI ({x}).

If y 6= x, (i) there exists a semi-I -open set Vx such
that y 6∈ Vx and x ∈ Vx of (ii) there exists a semi-I -
open set Vy such that x 6∈ Vy and y ∈ Vy. In case of
(i), y 6∈ ΛsI({x}) and y 6∈ ΛsI({x}) ∩ sClI ({x}).
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Therefore, {x} ⊇ ΛsI({x}) ∩ sClI ({x}). In case
(ii), y 6∈ sClI ({x}) and y 6∈ ΛsI({x}) ∩ sClI ({x}).
This shows that {x} ⊇ ΛsI({x}) ∩ sClI ({x}). Con-
sequently, we obtain {x} = ΛsI({x}) ∩ sClI ({x}).

Conversely, suppose that (X, τ,I ) is not semi-
I -T0. There exist distinct points x, y of X such that
(i) y ∈ Vx for every semi-I -open set Vx containing
x and (ii) x ∈ Vy for every semi-I -open set Vy con-
taining y. From (i) and (ii), we obtain y ∈ ΛsI({x})
and y ∈ sClI ({x}), respectively. Therefore, we
have y ∈ ΛsI({x}) ∩ sClI ({x}). By Theorem 13,
{x} = ΛsI({x}) ∩ sClI ({x}), since {x} is S ?-
closed. This is contrary x 6= y.

Definition 18. Let A be a subset of an ideal topolog-
ical space (X, τ,I ). A subset δs?(A) is defined as
follows: δs?(A) = ∪{F | F ∈ sIC(X, τ), F ⊆ A}.

Lemma 19. For subsets A, B and {Cγ | γ ∈ Γ}
of an ideal topological space (X, τ,I ), the following
properties hold:

(1) δs?(A) ⊆ A.

(2) δs?(δ
s
?(A)) = δs?(A).

(3) If A ⊆ B, then δs?(A) ⊆ δs?(B).

(4) If A ∈ sIC(X, τ), then A = δs?(A).

(5) ∪
γ∈Γ

δs?(Cγ) ⊆ δs?( ∪
γ∈Γ

Cγ).

(6) δs?( ∩
γ∈Γ

Cγ) = ∩
γ∈Γ

δs?(Cγ).

(7) ΛsI(X −A) = X − δs?(A) and

δs?(X −A) = X − ΛsI(A).

Definition 20. A subset A of an ideal topological
space (X, τ,I ) is called δs?-set if A = δs?(A). The
family of all δs?-sets of (X, τ,I ) is denoted by δs?(X)
(or simply δs?).

Lemma 21. For subsetsA andBγ(γ ∈ Γ) of an ideal
topological space (X, τ,I ), the following properties
hold:

(1) δs?(A) is a δs?-set.

(2) If A is a semi-I -closed set, then A is δs?-set.

(3) If Bγ is a δs?-set for each γ ∈ Γ, then ∪γ∈ΓBγ is
δs?-set.

(4) If Bγ is a δs?-set for each γ ∈ Γ, then ∩γ∈ΓBγ is
δs?-set.

Definition 22. A subset A of an ideal topological
space (X, τ,I ) is said to be S ?-open if the com-
plement of A is S ?-closed. The family of all S ?-
open sets in an ideal topological space (X, τ,I ) is
denoted by S ?O(X).

Theorem 23. For a subset A of an ideal topological
space (X, τ,I ), the following properties are equiva-
lent:

(1) A is S ?-open.

(2) A = T ∪G, where T is a δs?-set and G is a semi-
I -open set.

(3) A = T ∪ sIntI (A), where T is a δs?-set.

(4) A = δs?(A) ∪ sIntI (A).

(5) A ⊆ Cl?(Int(A)) ∪ δs?(A).

Proof. (1)⇒ (2): Suppose that A is S ?-open. Then
X−A is S ?-closed and henceX−A = T∩F , where
T is a ΛsI -set and F is a semi-I -closed set. Thus, we
have A = (X − T ) ∪ (X − F ), where X − T is a
δs?-set and X − F is a semi-I -open set.

(2) ⇒ (3): Let A = T ∪ G, where T is a δs?-set
and G is a semi-I -open set. Since G ⊆ A and G is
semi-I -open, G ⊆ sIntI (A) and hence

A = T ∪G
⊆ T ∪ sIntI (A)

⊆ A.

Consequently, we obtain A = T ∪ sIntI (A).
(3) ⇒ (4): Let A = T ∪ sIntI (A), where T is

a δs?-set. Since T ⊆ A, we have δs?(A) ⊇ δs?(T ) and
hence

A ⊇ δs?(A) ∪ sIntI (A)

⊇ δs?(T ) ∪ sIntI (A)

= T ∪ sIntI (A)

= A.

This shows that A = δs?(A) ∪ sIntI (A).
(4) ⇒ (5): Let A = δs?(A) ∪ sIntI (A). By (4)

and Lemma 12(2), we have

A = δs?(A) ∪ sIntI (A)

= δs?(A) ∪ [A ∩ Cl?(Int(A))]

= [δs?(A) ∪A] ∩ [Cl?(Int(A)) ∪ δs?(A)]

= A ∩ [Cl?(Int(A)) ∪ δs?(A)]

and hence A ⊆ Cl?(Int(A)) ∪ δs?(A).
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(5)⇒ (1): Let A ⊆ Cl?(Int(A)) ∪ δs?(A). Then

Int?(Cl(X −A)) ∩ ΛsI(X −A)

= (X − Cl?(Int(A))) ∩ (X − δs?(A))

= X − (Cl?(Int(A)) ∪ δs?(A))

⊆ X −A

and by Theorem 13, we have X − A is S ?-closed.
Thus, A is S ?-open.

Proposition 24. For subset Aγ(γ ∈ Γ) of an ideal
topological space (X, τ,I ), the following properties
hold:

(1) IfAγ is S ?-closed for each γ ∈ Γ, then ∩γ∈ΓAγ
is S ?-closed.

(2) If Aγ is S ?-open for each γ ∈ Γ, then ∪γ∈ΓAγ
is S ?-open.

4 Characterizations of semi-I -R0

ideal topological spaces

In this section, we introduce the notion of semi-I -
R0 ideal topological spaces. Moreover, some charac-
terizations of semi-I -R0 ideal topological spaces are
discussed.

Definition 25. An ideal topological space (X, τ,I )
is said to be semi-I -R0 if for each semi-I -open set
U and each x ∈ U , sClI ({x}) ⊆ U .

Proposition 26. An ideal topological space (X, τ,I )
is semi-I -R0 if and only if for eachU ∈ sIO(X, τ),
x ∈ U implies Int?(Cl({x})) ⊆ U .

Proof. This is obvious by Lemma 12(1).

Theorem 27. For an ideal topological space
(X, τ,I ), the following properties are equivalent:

(1) (X, τ,I ) is semi-I -R0.

(2) For each x, y ∈ X , sClI ({x}) 6= sClI ({y})
implies sClI ({x}) ∩ sClI ({y}) = ∅.

Proof. (1) ⇒ (2): Suppose that (X, τ,I ) is semi-
I -R0 and x, y ∈ X such that

sClI ({x}) 6= sClI ({y}).

Then, there exists z ∈ sClI ({x}) such that

z 6∈ sClI ({y})

(or z ∈ sClI ({y}) such that z 6∈ sClI ({x})). There
exists V ∈ sIO(X, τ) such that y 6∈ V and z ∈ V ;

hence x ∈ V . Therefore, we have x 6∈ sClI ({y}).
Thus, x ∈ X − sClI ({y}) ∈ sIO(X, τ), which
implies sClI ({x}) ⊆ X − sClI ({y}) and hence
sClI ({x}) ∩ sClI ({y}) = ∅. The proof for other-
wise is similar.

(2) ⇒ (1): Let V ∈ sIO(X, τ) and x ∈ V . If
y 6∈ V , then sClI ({y}) ∩ V = ∅. Therefore,

x 6∈ sClI ({y})

and sClI ({x}) 6= sClI ({y}). By the hypothesis,
sClI ({x}) ∩ sClI ({y}) = ∅ and hence

y 6∈ sClI ({x}).

This shows that sClI ({x}) ⊆ V . Thus, (X, τ,I ) is
semi-I -R0.

Lemma 28. For each points x, y of an ideal topolog-
ical space (X, τ,I ), the following properties hold:

(1) y ∈ ΛsI({x}) if and only if x ∈ sClI ({y}).

(2) ΛsI({x}) = ΛsI({y}) if and only if

sClI ({x}) = sClI ({y}).

Proof. (1) Let x 6∈ sClI ({y}). Then, there exists
U ∈ sIO(X, τ) such that x ∈ U and y 6∈ U . Thus,
y 6∈ ΛsI({x}). The converse is similarly shown.

(2) Suppose that ΛsI({x}) = ΛsI({x}) for any
points x, y in X . Since x ∈ ΛsI({x}), we have
x ∈ ΛsI({y}) and by (1), y ∈ sClI ({x}). There-
fore, sClI ({y}) ⊆ sClI ({x}). Similarly, we have
sClI ({x}) ⊆ sClI ({y}) and hence sClI ({x}) =
sClI ({y}).

Conversely, suppose that

sClI ({x}) = sClI ({y}).

Since x ∈ sClI ({x}), x ∈ sClI ({y}) and by (1),
y ∈ ΛsI({x}). By Lemma 4,

ΛsI({y}) ⊆ ΛsI(Λ
s
I({x}))

= ΛsI({x}).

Similarly, we have ΛsI({x}) ⊆ ΛsI({y}) and hence

ΛsI({x}) = ΛsI({y}).

Theorem 29. For an ideal topological space
(X, τ,I ), the following properties are equivalent:

(1) (X, τ,I ) is semi-I -R0.

5

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2020.19.33 Chawalit Boonpok

E-ISSN: 2224-2880 338 Volume 19, 2020



(2) For each x, y ∈ X , ΛsI({x}) 6= ΛsI({y}) implies
ΛsI({x}) ∩ ΛsI({y}) = ∅.

Proof. (1) ⇒ (2): Let (X, τ,I ) be semi-I -R0

and ΛsI({x}) 6= ΛsI({y}) for any points x, y in
X . Suppose that ΛsI({x}) ∩ ΛsI({y}) 6= ∅. Let
z ∈ ΛsI({x}) ∩ ΛsI({y}). Then z ∈ ΛsI({x})
and by Lemma 28(1), x ∈ sClI ({z}). There-
fore, x ∈ sClI ({z}) ∩ sClI ({x}) and by Theorem
27, sClI ({z}) = sClI ({x}). Similarly, we have
sClI ({z}) = sClI ({y}) and hence

sClI ({x}) = sClI ({y}).

By Lemma 28(2), we obtain ΛsI({x}) = ΛsI({y}).
(2) ⇒ (1): We show the sufficiency by using

Theorem 27. Suppose that sClI ({x}) 6= sClI ({y}).
By Lemma 28(2), we have ΛsI({x}) 6= ΛsI({y}) and
hence ΛsI({x}) ∩ ΛsI({y}) = ∅. Thus,

sClI ({x}) ∩ sClI ({y}) = ∅.

In fact, assume z ∈ sClI ({x}) ∩ sClI ({y}). Then
z ∈ sClI ({x}) implies x ∈ ΛsI({z}) and hence

x ∈ ΛsI({z}) ∩ ΛsI({x}).

By the hypothesis, ΛsI({z}) = ΛsI({x}) and by
Lemma 28(2), sClI ({z}) = sClI ({x}). Simi-
larly, we have sClI ({z}) = sClI ({y}) and hence
sClI ({x}) = sClI ({y}). This contradicts that
sClI ({x}) 6= sClI ({y}). Thus,

sClI ({x}) ∩ sClI ({y}) = ∅.

This shows that (X, τ,I ) is semi-I -R0.

Theorem 30. For an ideal topological space
(X, τ,I ), the following properties are equivalent:

(1) (X, τ,I ) is semi-I -R0.

(2) x ∈ sClI ({y}) if and only if y ∈ sClI ({x}).

Proof. (1) ⇒ (2): Suppose that x ∈ sClI ({y}). By
Lemma 28(1), y ∈ ΛsI({x}) and hence

ΛsI({x}) ∩ ΛsI({y}) 6= ∅.

By Theorem 29, we have ΛsI({x}) = ΛsI({y}) and
hence x ∈ ΛsI({y}). By Lemma 28(1),

y ∈ sClI ({x}).

The converse is similarly shown.
(2) ⇒ (1): Let U ∈ sIO(X, τ) and x ∈ U .

If y 6∈ U , then sClI ({y}) ∩ U = ∅. Hence,
x 6∈ sClI ({y}) and y 6∈ sClI ({x}). This implies
that sClI ({x}) ⊆ U . Thus, (X, τ,I ) is semi-I -
R0.

Theorem 31. For an ideal topological space
(X, τ,I ), the following properties are equivalent:

(1) (X, τ,I ) is semi-I -T1.

(2) For each point x ∈ X , {x} is semi-I -closed.

(3) (X, τ,I ) is semi-I -R0 and semi-I -T0.

Proof. (1)⇒ (2): It follows from Lemma 9.
(2)⇒ (3): The proof is obvious.
(3) ⇒ (1): Let x and y be any distinct points

of X . Since (X, τ,I ) is a semi-I -T0 space, there
exists a semi-I -open set U such that either x ∈ U
and y 6∈ U or x 6∈ U and y ∈ U . In case x ∈ U
and y 6∈ U , we have x ∈ sClI ({x}) ⊆ U and hence
y ∈ X − U ⊆ X − sClI ({x}). Since the proof of
the other is quite similar, (X, τ,I ) is a semi-I -T1

space.

Theorem 32. For an ideal topological space
(X, τ,I ), the following properties are equivalent:

(1) (X, τ,I ) is semi-I -R0.

(2) For any nonempty set A and each

G ∈ sIO(X, τ)

such that A ∩ G 6= ∅, there exists a semi-I -
closed set F such that A ∩ F 6= ∅ and F ⊆ G.

(3) For each semi-I -open set G,

G = ∪{F | F ∈ sIC(X, τ), F ⊆ G}.

(4) For each semi-I -closed set F , F = ΛsI(F ).

(5) For each x ∈ X , sClI ({x}) ⊆ ΛsI({x}).

(6) For each semi-I -closed set F and each

x ∈ X − F,

F ∩ sClI ({x}) = ∅.

(7) For any distinct points x and y of X ,
sClI ({x}) = sClI ({y}) or

sClI ({x}) ∩ sClI ({y}) = ∅.

(8) For each semi-I -closed set F and each

x ∈ X − F,

there exists a semi-I -open set U such that F ⊆
U and x 6∈ U .

(9) For each semi-I -closed set F and each x ∈ F ,
ΛsI({x}) ⊆ F .
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(10) For each x ∈ X , ΛsI({x}) ⊆ sClI ({x}).

Proof. (1)⇒ (2): Let A be a nonempty set of X and
G ∈ sIO(X, τ) such that A ∩ G 6= ∅. Then, there
exists x ∈ A ∩ G. Since x ∈ G ∈ sIO(X, τ), we
have sClI ({x}) ⊆ G. Put F = sClI ({x}), then
F ∈ sIC(X, τ), A ∩ F 6= ∅ and F ⊆ G.

(2)⇒ (3): Let G ∈ sIO(X, τ), then

G ⊇ ∪{F | F ∈ sIC(X, τ), F ⊆ G}.

Let x ∈ G. Then, there exists F ∈ sIC(X, τ) such
that x ∈ F and F ⊆ G. Therefore,

x ∈ ∪{F | F ∈ sIC(X, τ), F ⊆ G}

and hence G ⊆ ∪{F | F ∈ sIC(X, τ), F ⊆ G}.
(3) ⇒ (4): Let F ∈ sIC(X, τ). By Lemma 4,

we haveF ⊆ ΛsI(F ). Next, we showF ⊇ ΛsI(F ). Let
x 6∈ F . Then, we have x ∈ X−F ∈ sIO(X, τ) and
by (3), there exists a semi-I -closed set K such that
x ∈ K andK ⊆ X−F . Now, put U = X−K. Then
F ⊆ U ∈ sIO(X, τ) and x 6∈ U . Thus, x 6∈ ΛsI(F ).
This shows that F ⊇ ΛsI(F ).

(4) ⇒ (5): Let x ∈ X and y 6∈ ΛsI({x}). There
exists U ∈ sIO(X, τ) such that x ∈ U and y 6∈ U .
Thus, sClI ({y}) ∩ U = ∅. By (4), we have

ΛsI(sClI ({y})) ∩ U = ∅.

Since x 6∈ ΛsI(sClI ({y})), there exists

V ∈ sIO(X, τ)

such that sClI ({y}) ⊆ V and x 6∈ V . Therefore,
sClI ({x}) ∩ V = ∅. Since y ∈ V , y 6∈ sClI ({x})
and hence sClI ({x}) ⊆ ΛsI({x}).

(5) ⇒ (6): Let F be a semi-I -closed set such
that x ∈ X − F . By (5), we have

sClI ({x}) ⊆ ΛsI({x})
⊆ ΛsI(X − F )

= X − F

and hence sClI ({x}) ∩ F = ∅.
(6)⇒ (7): Let x, y be distinct points of X . Sup-

pose that sClI ({x}) ∩ sClI ({y}) 6= ∅. By (6), we
have x ∈ sClI ({y}) and y ∈ sClI ({x}). Thus,
sClI ({x}) ⊆ sClI ({y}) ⊆ sClI ({x}). Conse-
quently, we obtain sClI ({x}) = sClI ({y}).

(7)⇒ (1): Let V ∈ sIO(X, τ) and x ∈ V . For
each y 6∈ V , sClI ({y}) ∩ V = ∅ and hence

x 6∈ sClI ({y}).

Therefore, sClI ({x}) 6= sClI ({y}). By (7), for
each y 6∈ V , sClI ({x}) ∩ sClI ({y}) = ∅. Since

X − V is semi-I -closed, y ∈ sClI ({y}) ⊆ X − V
and ∪y∈X−UsClI ({y}) = X − U . Therefore,

sClI ({x}) ∩ (X − U)

= sClI ({x}) ∩ [∪y∈X−UsClI ({y})]
= ∪y∈X−U [sClI ({x}) ∩ sClI ({y})]
= ∅.

Thus, sClI ({x}) ⊆ V . This shows that (X, τ,I ) is
semi-I -R0.

(1) ⇒ (8): Let F be a semi-I -closed set such
that x ∈ X − F . Since (X, τ,I ) is semi-I -R0, we
have sClI ({x}) ⊆ X−F . Put U = X−sClI ({x}),
then U ∈ sIO(X, τ), F ⊆ U and x 6∈ U .

(8) ⇒ (9): Let F be a semi-I -closed set such
that x ∈ F . Let y 6∈ F . Then y ∈ X − F and
by (8), there exists a semi-I -open set U such that
F ⊆ U and y 6∈ U . Therefore, y 6∈ ΛsI(F ) and hence
y 6∈ ΛsI({x}). This shows that ΛsI({x}) ⊆ F .

(9) ⇒ (10): Let x be any point of X . Since
x ∈ sClI ({x}) and sClI ({x}) is semi-I -closed,
by (9), ΛsI({x}) ⊆ sClI ({x}).

(10) ⇒ (1): Let U ∈ sIO(X, τ) and x ∈ U . If
y 6∈ U , then sClI ({y})∩U = ∅ and x 6∈ sClI ({y}).
By (10), we have x 6∈ ΛsI({y}) and by Lemma 28(1),
y 6∈ sClI ({x}). Thus, sClI ({x}) ⊆ U . This shows
that (X, τ,I ) is semi-I -R0.

For a subset A of an ideal topological space
(X, τ,I ), we denote by τ|A the relative topology on
A and I|A = {A ∩ I0 | I0 ∈ I } is an ideal on A.

Lemma 33. [6] Let (X, τ,I ) be an ideal topological
space and B ⊆ A ⊆ X . Then

B?(τ|A ,I|A) = B?(τ,I ) ∩A.

Lemma 34. [11] Let (X, τ,I ) be an ideal topologi-
cal space and B ⊆ A ⊆ X . Then

Cl?A(B) = Cl?(B) ∩A.

Lemma 35. [11] Let A be a subset of an ideal topo-
logical space (X, τ,I ) and U be an open set. Then
U ∩ Cl?(A) ⊆ Cl?(U ∩A).

Lemma 36. Let (X, τ,I ) be an ideal topological
space and A ⊆ U ∈ τ . If A is semi-I|U -open in
(U, τ|U ,I|U ), then A is semi-I -open in (X, τ,I ).

Proof. Let A be semi-I|U -open in (U, τ|U ,I|U ). By
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Lemma 34 and 35, we have

A ⊆ Cl?U (IntU (A))

= Cl?(IntU (A)) ∩ U
= Cl?(Int(A)) ∩ U
⊆ Cl?(Int(A) ∩ U)

= Cl?(Int(A ∩ U))

⊆ Cl?(Int(A)).

Therefore, A is semi-I -open in (X, τ,I ).

Lemma 37. Let (X, τ,I ) be an ideal topological
space and A ⊆ U ∈ τ . Then

sClI|U
(A) = sClI (A) ∩ U.

Proof. Let A ⊆ U ∈ τ . By Lemma 12(1), we have

sClI|U
(A) = A ∪ Int?U (ClU (A))

= A ∪ Int?U (Cl(A) ∩ U)

= A ∪ Int?(Cl(A) ∩ U)

= A ∪ (Int?(Cl(A)) ∩ U)

= (A ∪ Int?(Cl(A))) ∩ U
= sClI (A) ∩ U.

Theorem 38. Let (X, τ,I ) be an ideal topological
space and U ∈ τ . If (X, τ,I ) is semi-I -R0, then
(U, τ|U ,I|U ) is semi-I|U -R0.

Proof. Suppose that (X, τ,I ) is a semi-I -R0 space.
Let V ∈ sI|UO(U, τ|U ) and x ∈ V . By Lemma
36, we have V ∈ sIO(X, τ). Since (X, τ,I ) is
semi-I -R0, sClI ({x}) ⊆ V and by Lemma 37,
sClI|U

({x}) = sClI ({x}) ∩ U ⊆ V . This shows
that (U, τ|U ,I|U ) is semi-I|U -R0.

Definition 39. An ideal topological space (X, τ,I )
is said to be weak semi-I -R0 if every S ?-closed sin-
gleton is a ΛsI -set.

Theorem 40. If (X, τ,I ) is semi-I -R0, then
(X, τ,I ) is weak semi-I -R0.

Proof. Let x ∈ X be such that {x} is S ?-closed. By
Theorem 13, we have {x} = ΛsI({x}) ∩ sClI ({x}).
Suppose that {x} is not a ΛsI -set. Then, there ex-
ists y ∈ ΛsI({x}) − {x}. Thus, y 6∈ sClI ({x}).
Since (X, τ,I ) is semi-I -R0 and by Theorem 27,
sClI ({y}) ∩ sClI ({x}) = ∅. This shows that

x 6∈ sClI ({y}).

There exists a semi-I -open set V containing x but
not y and hence y 6∈ ΛsI({x}), which is a con-
tradiction. Thus, (X, τ,I ) is a weak semi-I -R0

space.

The converse of Theorem 40 need not be true as
shown in the following example.

Example 41. Let X = {a, b, c} with a topology τ =
{∅, {a}, X} and an ideal I = {∅}. Then (X, τ,I )
is a weak semi-I -R0 space which is not semi-I -R0.

Theorem 42. For an ideal topological space
(X, τ,I ), the following properties are equivalent:

(1) (X, τ,I ) is semi-I -T1.

(2) (X, τ,I ) is semi-I -T0 and semi-I -R0.

(3) (X, τ,I ) is semi-I -T0 and weak semi-I -R0.

Proof. It suffices to show that (3) ⇒ (1): To shows
that (X, τ,I ) is semi-I -T1, it suffices to show by
Lemma 9 that every singleton of X is a ΛsI -set. Let
{x} be singleton of X . Since (X, τ,I ) is semi-I -
T0, it follows from Theorem 17 that {x} is S ?-closed.
Since (X, τ,I ) is weak semi-I -R0, {x} is a ΛsI -set.

5 Conclusion

The notions of closed sets and some low separation
axioms in topological spaces are extensively devel-
oped and used in many fields of applied sciences. The
study of generalized closed sets and some low sepa-
ration axioms have been found to be useful in com-
puter science and digital topology. This paper is deal-
ing with the concepts of S ?-closed sets and S ?-open
sets which are defined by utilizing the notion of ΛsI -
sets. Some properties of S ?-closed sets and S ?-open
sets are obtained. Moreover, several interesting char-
acterizations of semi-I -R0 ideal topological spaces
are established. The ideas and results of this paper
may motivate further research.
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